Numerical characterization of multi-nozzle spray cooling
نویسندگان
چکیده
This work aims to study the characteristics of multi-nozzle spray cooling using CFD method based on the fundamentals of air flow and liquid droplet collision dynamics. A mathematical model for the two-phase flow was presented. The simulations were performed using a EulerianeLagrangian approach. Focus was placed on revealing the flow behavior with multiple nozzles, the droplet trajectory, and the influencing factors. The predictions by the present simulations matched well with the experimental results available in the literature, with a comparison showing deviation below 10%. It is concluded that the multi-nozzle spray characteristics including the Sauter Mean Diameter (SMD) of droplets and the mass weighted average droplet velocity are influenced by the nozzle inlet pressure, the mass flux, the nozzle-to-surface distance and the number of nozzles. With increase of the inlet pressure, the droplet SMD decreases and the mass weighted average droplet velocity increases. With increase of the mass flux, both the droplet SMD and the mass weighted average droplet velocity increase. The nozzle-to-surface distance is a very sensitive parameter to the droplet velocity distribution. Nevertheless, the droplet velocity distribution is not a monotonic function of the nozzle-to-surface distance. With increasing nozzle number, the change in droplet size is not appreciable; whereas the mass weighted average droplet velocity decreases and the distribution of the droplet size is improved significantly. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Characterization of Cryogenic Spray Nozzles with Application to Skin Cooling
* Corresponding author: Beckman Laser Institute and Medical Clinic, University of California Irvine, Irvine, CA 92612. e-mail: [email protected] ABSTRACT Cryogenic sprays are used for cooling of human skin during laser treatments of hypervascular lesions, such as Port Wine Stain birthmarks. In this work, six straight-tube nozzles, including two commercial nozzles, are characterized by obtain...
متن کاملThe Effect of Discontinued Water Spray Cooling on the Heat Transfer Coefficient
Water spray cooling is a technique typically used in heat treatment and other metallurgical processes where controlled temperature regimes are required. Water spray cooling is used in static (without movement) or dynamic (with movement of the steel plate) regimes. The static regime is notable for the fixed position of the hot steel plate and fixed spray nozzle. This regime is typical for quench...
متن کاملNumerical investigation of the effect of swirl and needle lift profile change on the diesel fuel spray behavior
In this study, the effect of creation swirly flow and needle lift profile change on the behavior of the diesel fuel spray considered. To this end, two phase flow inside the diesel injector was simulated using the CFD. Solid works software has been used for geometry creation and AVL-Fire software has been used for meshing and simulating. Firstly, the liquid flow and spray characteristics of the ...
متن کاملInfluence of Cryogen Spray Cooling Parameters on the Heat Extraction Rate from a Sprayed Surface
Cryogen spray cooling is used to prevent epidermal thermal damage during port-wine stain laser therapy, despite the limited understanding of the fluid dynamics, thermodynamics, and heat transfer characteristics of cryogen sprays. In recent studies, it has been suggested that the heat flux through human skin could be increased by changing physical parameters such as nozzle-to-skin distance, nozz...
متن کاملSimulation of Cold Spray Nozzle Accompanying a Water-cooling Adjustment
Cold spraying is a coating process which enables production of metallic and metallic ceramic coatings with dense (very low porosity level) and pure (low oxygen content) structures. Several coating applications such as corrosion resistance and electrical conductivity rely on these properties. Generally, cold spraying is based on higher particle velocities and lower process temperatures than othe...
متن کامل